
PyDriller Documentation
Release 1.0

Davide Spadini

May 28, 2020

Contents

1 Overview / Install 1
1.1 Requirements . 1
1.2 Installing PyDriller . 1
1.3 Source Code . 1
1.4 How to cite PyDriller . 2

2 Getting Started 3

3 Configuration 5
3.1 Selecting projects to analyze . 5
3.2 Selecting the Commit Range . 6
3.3 Filtering commits . 7
3.4 Other Configurations . 7
3.5 Git Diff Algorithms . 7

4 Commit Object 9

5 Modifications 11

6 GitRepository 13

7 API Reference 15
7.1 GitRepository . 15
7.2 RepositoryMining . 17
7.3 Commit . 18
7.4 Developer . 21
7.5 Process Metrics . 21

8 Indices and tables 23

Python Module Index 25

Index 27

i

ii

CHAPTER 1

Overview / Install

PyDriller is a Python framework that helps developers on mining software repositories. With PyDriller you can easily
extract information from any Git repository, such as commits, developers, modifications, diffs, and source codes, and
quickly export CSV files.

1.1 Requirements

• Python 3.4 or newer

• Git

1.2 Installing PyDriller

Installing PyDriller is easily done using pip. Assuming it is installed, just run the following from the command-line:

pip install pydriller

This command will download the latest version of GitPython from the Python Package Index and install it to your
system. This will also install the necessary dependencies.

1.3 Source Code

PyDriller’s git repo is available on GitHub, which can be browsed at:

• https://github.com/ishepard/pydriller

and cloned using:

1

https://www.python.org
https://git-scm.com/
https://pip.pypa.io/en/latest/installing.html
http://pypi.python.org/pypi/GitPython
https://github.com/ishepard/pydriller

PyDriller Documentation, Release 1.0

$ git clone https://github.com/ishepard/pydriller
$ cd pydriller

Optionally (but suggested), make use of virtualenv:

$ virtualenv -p python3 venv
$ source venv/bin/activate

Install the requirements:

$ pip install -r requirements
$ unzip test-repos.zip

and run the tests using pytest:

$ pytest

1.4 How to cite PyDriller

@inbook{PyDriller,
title = "PyDriller: Python Framework for Mining Software Repositories",
abstract = "Software repositories contain historical and valuable information

→˓about the overall development of software systems. Mining software repositories
→˓(MSR) is nowadays considered one of the most interesting growing fields within
→˓software engineering. MSR focuses on extracting and analyzing data available in
→˓software repositories to uncover interesting, useful, and actionable information
→˓about the system. Even though MSR plays an important role in software engineering
→˓research, few tools have been created and made public to support developers in
→˓extracting information from Git repository. In this paper, we present PyDriller, a
→˓Python Framework that eases the process of mining Git. We compare our tool against
→˓the state-of-the-art Python Framework GitPython, demonstrating that PyDriller can
→˓achieve the same results with, on average, 50% less LOC and significantly lower
→˓complexity.URL: https://github.com/ishepard/pydrillerMaterials: https://doi.org/10.
→˓5281/zenodo.1327363Pre-print: https://doi.org/10.5281/zenodo.1327411",

author = "Spadini, Davide and Aniche, Maurício and Bacchelli, Alberto",
year = "2018",
doi = "10.1145/3236024.3264598",
booktitle = "The 26th ACM Joint European Software Engineering Conference and

→˓Symposium on the Foundations of Software Engineering (ESEC/FSE)",
}

2 Chapter 1. Overview / Install

CHAPTER 2

Getting Started

Using PyDriller is very simple. You only need to create RepositoryMining: this class will receive in input the path to
the repository and will return a generator that iterates over the commits. For example:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
print('Hash {}, author {}'.format(commit.hash, commit.author.name))

will print the name of the developers for each commit.

Inside RepositoryMining, you will have to configure which projects to analyze, for which commits, for which dates
etc. For all the possible configurations, have a look at Configuration.

We can also pass a list of repositories (both local and remote), and PyDriller will analyze sequentially. In case of a
remote repository, PyDriller will clone it in a temporary folder, and delete it afterwards. For example:

urls = ["repos/repo1", "repos/repo2", "https://github.com/ishepard/pydriller.git",
→˓"repos/repo3", "https://github.com/apache/hadoop.git"]
for commit in RepositoryMining(path_to_repo=urls).traverse_commits():

print("Project {}, commit {}, date {}".format(
commit.project_path, commit.hash, commit.author_date))

Let’s make another example: print all the modified files for every commit. This does the magic:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
for modification in commit.modifications:

print('Author {} modified {} in commit {}'.format(commit.author.name,
→˓modification.filename, commit.hash))

That’s it!

Behind the scenes, PyDriller opens the Git repository and extracts all the necessary information. Then, the framework
returns a generator that can iterate over the commits.

Furthermore, PyDriller can calculate structural metrics of every file changed in a commit. To calculate these metrics,
Pydriller relies on Lizard, a powerful tool that can analyze source code of many different programming languages,
both at class and method level!

3

https://github.com/terryyin/lizard

PyDriller Documentation, Release 1.0

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
for mod in commit.modifications:

print('{} has complexity of {}, and it contains {} methods'.format(
mod.filename, mod.complexity, len(mod.methods)))

4 Chapter 2. Getting Started

CHAPTER 3

Configuration

One of the main advantage of using PyDriller to mine software repositories, is that it is highly configurable. We will
now see all the options that once can pass to RepositoryMining.

3.1 Selecting projects to analyze

The only required parameter of RepositoryMining is path_to_repo, which specifies the repo(s) to analyze. It must be
of type str or List[str], meaning analyze only one repository or more than one.

Furthermore, PyDriller supports both local and remote repositories: if you pass an URL, PyDriller will automatically
create a temporary folder, clone the repository, run the study, and finally delete the temporary folder.

For example, the following are all possible inputs for RepositoryMining:

analyze only 1 local repository
url = "repos/pydriller/"

analyze 2 local repositories
url = ["repos/pydriller/", "repos/anotherrepo/"]

analyze both local and remote
url = ["repos/pydriller/", "https://github.com/apache/hadoop.git", "repos/anotherrepo
→˓"]

analyze 1 remote repository
url = "https://github.com/apache/hadoop.git"

To keep track of what project PyDriller is analyzing, the Commit object has a property called project_name.

5

PyDriller Documentation, Release 1.0

3.2 Selecting the Commit Range

By default, PyDriller analyzes all the commits in the repository. However, filters can be applied to RepositoryMining
to visit only specific commits.

• single (str): single hash of the commit. The visitor will be called only on this commit

FROM:

• since (datetime): only commits after this date will be analyzed

• from_commit (str): only commits after this commit hash will be analyzed

• from_tag (str): only commits after this commit tag will be analyzed

TO:

• to (datetime): only commits up to this date will be analyzed

• to_commit (str): only commits up to this commit hash will be analyzed

• to_tag (str): only commits up to this commit tag will be analyzed

ORDER:

• reversed_order (bool): by default PyDriller returns the commits in chronological order (from the oldest to
the newest, the contrary of git log). If you need viceversa instead, put this field to True. NOTE: if you use
reverse_order together from_commit and to_commit, you need to set them according to the order (e.g., if the
order of commits is A -> B -> C,).

Examples:

Analyze single commit
RepositoryMining('path/to/the/repo', single='6411e3096dd2070438a17b225f44475136e54e3a
→˓').traverse_commits()

Since 8/10/2016
RepositoryMining('path/to/the/repo', since=datetime(2016, 10, 8, 17, 0, 0)).traverse_
→˓commits()

Between 2 dates
dt1 = datetime(2016, 10, 8, 17, 0, 0)
dt2 = datetime(2016, 10, 8, 17, 59, 0)
RepositoryMining('path/to/the/repo', since=dt1, to=dt2).traverse_commits()

Between tags
from_tag = 'tag1'
to_tag = 'tag2'
RepositoryMining('path/to/the/repo', from_tag=from_tag, to_tag=to_tag).traverse_
→˓commits()

Up to a date
dt1 = datetime(2016, 10, 8, 17, 0, 0, tzinfo=to_zone)
RepositoryMining('path/to/the/repo', to=dt1).traverse_commits()

!!!!! ERROR !!!!! THIS IS NOT POSSIBLE
RepositoryMining('path/to/the/repo', from_tag=from_tag, from_commit=from_commit).
→˓traverse_commits()

IMPORTANT: it is not possible to configure more than one filter of the same category (for example, more than one
from). It is also not possible to have the single filter together with other filters!

6 Chapter 3. Configuration

PyDriller Documentation, Release 1.0

3.3 Filtering commits

PyDriller comes with a set of common commit filters that you can apply:

• only_in_branch (str): only analyses commits that belong to this branch.

• only_no_merge (bool): only analyses commits that are not merge commits.

• only_authors (List[str]): only analyses commits that are made by these authors. The check is made on the
username, NOT the email.

• only_commits (List[str]): only these commits will be analyzed.

• only_releases (bool): only commits that are tagged (“release” is a term of GitHub, does not actually exist in
Git)

• filepath (str): only commits that modified this file will be analyzed.

• only_modifications_with_file_types (List[str]): only analyses commits in which at least one modification was
done in that file type, e.g., if you pass “.java”, it will visit only commits in which at least one Java file was
modified; clearly, it will skip other commits (e.g., commits that did not modify Java files).

Examples:

Only commits in branch1
RepositoryMining('path/to/the/repo', only_in_branch='branch1').traverse_commits()

Only commits in branch1 and no merges
RepositoryMining('path/to/the/repo', only_in_branch='branch1', only_no_merge=True).
→˓traverse_commits()

Only commits of author "ishepard" (yeah, that's me)
RepositoryMining('path/to/the/repo', only_authors=['ishepard']).traverse_commits()

Only these 3 commits
RepositoryMining('path/to/the/repo', only_commits=['hash1', 'hash2', 'hash3']).
→˓traverse_commits()

Only commit that modified "Matricula.javax"
RepositoryMining('path/to/the/repo', filepath='Matricula.javax').traverse_commits()

Only commits that modified a java file
RepositoryMining('path/to/the/repo', only_modifications_with_file_types=['.java']).
→˓traverse_commits()

3.4 Other Configurations

Some git commands, such as git diff, can be customized by the user. In this section, we report some of the
customization that can be used within pydriller.

• histogram (bool): uses git diff --histogram instead of the normal git. See Git Diff Algorithms.

3.5 Git Diff Algorithms

Git offers four different algorithms in git diff:

3.3. Filtering commits 7

PyDriller Documentation, Release 1.0

• Myers (default)

• Minimal (improved Myers)

• Patience (try to give contextual diff)

• Histogram (kind of enhanced patience)

Differences between four diff algorithms

Based on the comparison between Myers and Histogram in a study by Nugroho, et al (2019), various diff algorithms
in the git diff command produced unequal diff outputs. From the result of patches analysis, they found that
Histogram is better than Myers to show the changes of code that can be expected to recover the changing operations.
Thus, in this tool, we implement histogram diff algorithm to consider differences in source code.

8 Chapter 3. Configuration

https://git-scm.com/docs/git-diff#Documentation/git-diff.txt---diff-algorithmpatienceminimalhistogrammyers).
https://doi.org/10.1007/s10664-019-09772-z

CHAPTER 4

Commit Object

A Commit object has all the information of a Git commit, and much more. More specifically:

• hash (str): hash of the commit

• msg (str): commit message

• author (Developer): commit author (name, email)

• author_date (datetime): authored date

• author_timezone (int): author timezone (expressed in seconds from epoch)

• committer (Developer): commit committer (name, email)

• committer_date (datetime): commit date

• committer_timezone (int): commit timezone (expressed in seconds from epoch)

• branches (List[str]): List of branches that contain this commit

• in_main_branch (Bool): True if the commit is in the main branch

• merge (Bool): True if the commit is a merge commit

• modifications (List[Modifications]): list of modified files in the commit (see Modifications)

• parents (Set[str]): list of the commit parents

• project_name (str): project name

• project_path (str): project path

Example:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
print(

'The commit {} has been modified by {}, '
'committed by {} in date {}'.format(

commit.hash,
commit.author.name,

(continues on next page)

9

PyDriller Documentation, Release 1.0

(continued from previous page)

commit.committer.name,
commit.committer_date

)
)

10 Chapter 4. Commit Object

CHAPTER 5

Modifications

You can get the list of modified files, as well as their diffs and current source code. To that, all you have to do is to get
the list of Modifications that exists inside Commit. A modification object has the following fields:

• old_path: old path of the file (can be _None_ if the file is added)

• new_path: new path of the file (can be _None_ if the file is deleted)

• change_type: type of the change: can be Added, Deleted, Modified, or Renamed.

• diff: diff of the file as Git presents it (e.g., starting with @@ xx,xx @@).

• source_code: source code of the file (can be _None_ if the file is deleted)

• source_code_before: source code of the file before the change (can be _None_ if the file is added)

• added: number of lines added

• removed: number of lines removed

• nloc: Lines Of Code (LOC) of the file

• complexity: Cyclomatic Complexity of the file

• token_count: Number of Tokens of the file

• methods: list of methods of the file. The list might be empty if the programming language is not supported or
if the file is not a source code file.

For example:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
for m in commit.modifications:

print(
"Author {}".format(commit.author.name),
" modified {}".format(m.filename),
" with a change type of {}".format(m.change_type.name),
" and the complexity is {}".format(m.complexity)

)

11

PyDriller Documentation, Release 1.0

12 Chapter 5. Modifications

CHAPTER 6

GitRepository

GitRepository is a wrapper for the most common utilities of Git. It receives in input the path to repository, and it takes
care of the rest. For example, with GitRepository you can checkout a specific commit:

gr = GitRepository('test-repos/git-1/')
gr.checkout('a7053a4dcd627f5f4f213dc9aa002eb1caf926f8')

However, be careful! Git checkout changes the state of the repository on the hard disk, hence you should not use this
command if other processes (maybe threads? or multiple repository mining?) read from the same repository.

GitRepository also contains a function to parse the a diff, very useful to obtain the list of lines added or deleted for
future analysis. For example, if we run this:

diff = '@@ -2,6 +2,7 @@ aa'+\
' bb'+\
'-cc'+\
' log.info(\"aa\")'+\
'+log.debug(\"b\")'+\
' dd'+\
' ee'+\
' ff'

gr = GitRepository('test-repos/test1')
parsed_lines = gr.parse_diff(diff)

added = parsed_lines['added']
deleted = parsed_lines['deleted']

print('Added: {}'.format(added)) # result: Added: [(4, 'log.debug("b")')]
print('Deleted: {}'.format(deleted)) # result: Deleted: [(3, 'cc')]

the result is:

Added: [(4, 'log.debug("b")')]
Deleted: [(3, 'cc')]

13

PyDriller Documentation, Release 1.0

Another very useful API (especially for researchers ;)) is the one that, given a commit, allows you to retrieve all the
commits that last “touched” the modified lines of the file (if you pass a bug fixing commit, it will retrieve the bug
inducing).

PS: Since PyDriller 1.9, this function can be customized to use “git hyper-blame” (check this for more info). Git hyper
blame can be instructed to skip specific commits (like commits that refactor the code).

Let’s see an example:

commit abc modified line 1 of file A
commit def modified line 2 of file A
commit ghi modified line 3 of file A
commit lmn deleted lines 1 and 2 of file A

gr = GitRepository('test-repos/test5')

commit = gr.getcommit('lmn')
buggy_commits = gr.get_commits_last_modified_lines(commit)
print(buggy_commits) # result: (abc, def)

Since in commit lmn 2 lines were deleted (line 1 and 2), PyDriller can retrieve the commits in which those lines were
last modified (in our example, commit abc and def).

Checkout the API reference of this class for the complete list of the available functions.

14 Chapter 6. GitRepository

https://commondatastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/depot_tools_tutorial.html#_setting_up

CHAPTER 7

API Reference

7.1 GitRepository

This module includes 1 class, GitRepository, representing a repository in Git.

class pydriller.git_repository.GitRepository(path: str, conf=None)
Class representing a repository in Git. It contains most of the logic of PyDriller: obtaining the list of commits,
checkout, reset, etc.

__del__()

__init__(path: str, conf=None)
Init the Git RepositoryMining.

Parameters path (str) – path to the repository

__module__ = 'pydriller.git_repository'

checkout(_hash: str)→ None
Checkout the repo at the speficied commit. BE CAREFUL: this will change the state of the repo, hence it
should not be used with more than 1 thread.

Parameters _hash – commit hash to checkout

clear()

files()→ List[str]
Obtain the list of the files (excluding .git directory).

Returns List[str], the list of the files

get_commit(commit_id: str)→ pydriller.domain.commit.Commit
Get the specified commit.

Parameters commit_id (str) – hash of the commit to analyze

Returns Commit

15

PyDriller Documentation, Release 1.0

get_commit_from_gitpython(commit: git.objects.commit.Commit) → py-
driller.domain.commit.Commit

Build a PyDriller commit object from a GitPython commit object. This is internal of PyDriller, I don’t
think users generally will need it.

Parameters commit (GitCommit) – GitPython commit

Returns Commit commit: PyDriller commit

get_commit_from_tag(tag: str)→ pydriller.domain.commit.Commit
Obtain the tagged commit.

Parameters tag (str) – the tag

Returns Commit commit: the commit the tag referred to

get_commits_last_modified_lines(commit: pydriller.domain.commit.Commit, modifica-
tion: pydriller.domain.commit.Modification = None,
hashes_to_ignore_path: str = None)→ Dict[str, Set[str]]

Given the Commit object, returns the set of commits that last “touched” the lines that are modified in the
files included in the commit. It applies SZZ.

The algorithm works as follow: (for every file in the commit)

1- obtain the diff

2- obtain the list of deleted lines

3- blame the file and obtain the commits were those lines were added

Can also be passed as parameter a single Modification, in this case only this file will be analyzed.

Parameters

• commit (Commit) – the commit to analyze

• modification (Modification) – single modification to analyze

• hashes_to_ignore_path (str) – path to a file containing hashes of commits to
ignore.

Returns the set containing all the bug inducing commits

get_commits_modified_file(filepath: str)→ List[str]
Given a filepath, returns all the commits that modified this file (following renames).

Parameters filepath (str) – path to the file

Returns the list of commits’ hash

get_head()→ pydriller.domain.commit.Commit
Get the head commit.

Returns Commit of the head commit

get_list_commits(branch: str = None, reverse_order: bool = True) → Genera-
tor[[pydriller.domain.commit.Commit, None], None]

Return a generator of commits of all the commits in the repo.

Returns Generator[Commit], the generator of all the commits in the repo

get_tagged_commits()
Obtain the hash of all the tagged commits.

Returns list of tagged commits (can be empty if there are no tags)

git
GitPython object Git.

16 Chapter 7. API Reference

PyDriller Documentation, Release 1.0

Returns Git

parse_diff(diff: str)→ Dict[str, List[Tuple[int, str]]]
Given a diff, returns a dictionary with the added and deleted lines. The dictionary has 2 keys: “added” and
“deleted”, each containing the corresponding added or deleted lines. For both keys, the value is a list of
Tuple (int, str), corresponding to (number of line in the file, actual line).

Parameters diff (str) – diff of the commit

Returns Dictionary

repo
GitPython object Repo.

Returns Repo

reset()→ None
Reset the state of the repo, checking out the main branch and discarding local changes (-f option).

total_commits()→ int
Calculate total number of commits.

Returns the total number of commits

7.2 RepositoryMining

This module includes 1 class, RepositoryMining, main class of PyDriller.

class pydriller.repository_mining.RepositoryMining(path_to_repo: Union[str,
List[str]], single: str = None,
since: datetime.datetime =
None, to: datetime.datetime =
None, from_commit: str = None,
to_commit: str = None, from_tag:
str = None, to_tag: str = None,
reversed_order: bool = False,
only_in_branch: str = None,
only_modifications_with_file_types:
List[str] = None, only_no_merge:
bool = False, only_authors:
List[str] = None, only_commits:
List[str] = None, only_releases:
bool = False, filepath: str = None,
histogram_diff: bool = False,
skip_whitespaces: bool = False,
clone_repo_to: str = None)

This is the main class of PyDriller, responsible for running the study.

__init__(path_to_repo: Union[str, List[str]], single: str = None, since: datetime.datetime = None, to:
datetime.datetime = None, from_commit: str = None, to_commit: str = None, from_tag:
str = None, to_tag: str = None, reversed_order: bool = False, only_in_branch: str =
None, only_modifications_with_file_types: List[str] = None, only_no_merge: bool = False,
only_authors: List[str] = None, only_commits: List[str] = None, only_releases: bool =
False, filepath: str = None, histogram_diff: bool = False, skip_whitespaces: bool = False,
clone_repo_to: str = None)

Init a repository mining. The only required parameter is “path_to_repo”: to analyze a single repo, pass the
absolute path to the repo; if you need to analyze more repos, pass a list of absolute paths.

7.2. RepositoryMining 17

PyDriller Documentation, Release 1.0

Furthermore, PyDriller supports local and remote repositories: if you pass a path to a repo, PyDriller will
run the study on that repo; if you pass an URL, PyDriller will clone the repo in a temporary folder, run the
study, and delete the temporary folder.

Parameters

• path_to_repo (Union[str,List[str]]) – absolute path (or list of absolute
paths) to the repository(ies) to analyze

• single (str) – hash of a single commit to analyze

• since (datetime) – starting date

• to (datetime) – ending date

• from_commit (str) – starting commit (only if since is None)

• to_commit (str) – ending commit (only if to is None)

• from_tag (str) – starting the analysis from specified tag (only if since and
from_commit are None)

• to_tag (str) – ending the analysis from specified tag (only if to and to_commit are
None)

• reversed_order (bool) – whether the commits should be analyzed in reversed order

• only_in_branch (str) – only commits in this branch will be analyzed

• only_modifications_with_file_types (List[str]) – only modifications
with that file types will be analyzed

• only_no_merge (bool) – if True, merges will not be analyzed

• only_authors (List[str]) – only commits of these authors will be analyzed (the
check is done on the username, NOT the email)

• only_commits (List[str]) – only these commits will be analyzed

• filepath (str) – only commits that modified this file will be analyzed

__module__ = 'pydriller.repository_mining'

traverse_commits()→ Generator[[pydriller.domain.commit.Commit, None], None]
Analyze all the specified commits (all of them by default), returning a generator of commits.

7.3 Commit

This module contains all the classes regarding a specific commit, such as Commit, Modification, ModificationType
and Method.

class pydriller.domain.commit.Commit(commit: git.objects.commit.Commit, conf)
Class representing a Commit. Contains all the important information such as hash, author, dates, and modified
files.

__init__(commit: git.objects.commit.Commit, conf)→ None
Create a commit object.

Parameters

• commit – GitPython Commit object

• conf – Configuration class

18 Chapter 7. API Reference

PyDriller Documentation, Release 1.0

__module__ = 'pydriller.domain.commit'

author
Return the author of the commit as a Developer object.

Returns author

author_date
Return the authored datetime.

Returns datetime author_datetime

author_timezone
Author timezone expressed in seconds from epoch.

Returns int timezone

branches
Return the set of branches that contain the commit.

Returns set(str) branches

committer
Return the committer of the commit as a Developer object.

Returns committer

committer_date
Return the committed datetime.

Returns datetime committer_datetime

committer_timezone
Author timezone expressed in seconds from epoch.

Returns int timezone

hash
Return the SHA of the commit.

Returns str hash

in_main_branch
Return True if the commit is in the main branch, False otherwise.

Returns bool in_main_branch

merge
Return True if the commit is a merge, False otherwise.

Returns bool merge

modifications
Return a list of modified files.

Returns List[Modification] modifications

msg
Return commit message.

Returns str commit_message

parents
Return the list of parents SHAs.

Returns List[str] parents

7.3. Commit 19

PyDriller Documentation, Release 1.0

project_name
Return the project name.

Returns project name

class pydriller.domain.commit.Method(func)
This class represents a method in a class. Contains various information extracted through Lizard.

__init__(func)
Initialize a method object. This is calculated using Lizard: it parses the source code of all the modifications
in a commit, extracting information of the methods contained in the file (if the file is a source code written
in one of the supported programming languages).

__module__ = 'pydriller.domain.commit'

class pydriller.domain.commit.Modification(old_path: str, new_path: str, change_type:
pydriller.domain.commit.ModificationType,
diff_and_sc: Dict[str, str])

This class contains information regarding a modified file in a commit.

__init__(old_path: str, new_path: str, change_type: pydriller.domain.commit.ModificationType,
diff_and_sc: Dict[str, str])

Initialize a modification. A modification carries on information regarding the changed file. Normally, you
shouldn’t initialize a new one.

__module__ = 'pydriller.domain.commit'

added
Return the total number of added lines in the file.

Returns int lines_added

complexity
Calculate the Cyclomatic Complexity of the file.

Returns Cyclomatic Complexity of the file

diff_parsed
Returns a dictionary with the added and deleted lines. The dictionary has 2 keys: “added” and “deleted”,
each containing the corresponding added or deleted lines. For both keys, the value is a list of Tuple (int,
str), corresponding to (number of line in the file, actual line).

Returns Dictionary

filename
Return the filename. Given a path-like-string (e.g. “/Users/dspadini/pydriller/myfile.py”) returns only the
filename (e.g. “myfile.py”)

Returns str filename

methods
Return the list of methods in the file. Every method contains various information like complexity, loc,
name, number of parameters, etc.

Returns list of methods

new_path
New path of the file. Can be None if the file is deleted.

Returns str new_path

nloc
Calculate the LOC of the file.

Returns LOC of the file

20 Chapter 7. API Reference

PyDriller Documentation, Release 1.0

old_path
Old path of the file. Can be None if the file is added.

Returns str old_path

removed
Return the total number of deleted lines in the file.

Returns int lines_deleted

token_count
Calculate the token count of functions.

Returns token count

class pydriller.domain.commit.ModificationType
Type of Modification. Can be ADD, COPY, RENAME, DELETE, MODIFY or UNKNOWN.

ADD = 1

COPY = 2

DELETE = 4

MODIFY = 5

RENAME = 3

UNKNOWN = 6

__module__ = 'pydriller.domain.commit'

7.4 Developer

This module includes only 1 class, Developer, representing a developer.

class pydriller.domain.developer.Developer(name: str, email: str)
This class represents a developer. We save the email and the name.

__init__(name: str, email: str)
Class to identify a developer.

Parameters

• name (str) – name and surname of the developer

• email (str) – email of the developer

__module__ = 'pydriller.domain.developer'

7.5 Process Metrics

class pydriller.metrics.process.process_metric.ProcessMetric(path_to_repo: str,
from_commit: str =
None, to_commit:
str = None)

Abstract class to implement process metrics

__init__(path_to_repo: str, from_commit: str = None, to_commit: str = None)

Path_to_repo path to a single repo

7.4. Developer 21

PyDriller Documentation, Release 1.0

To_commit the SHA of the commit to stop counting. If None, the analysis starts from the latest
commit

From_commit the SHA of the commit to start counting. If None, the analysis ends to the first
commit

__module__ = 'pydriller.metrics.process.process_metric'

count()
Implement the main functionality of the metric

22 Chapter 7. API Reference

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

23

PyDriller Documentation, Release 1.0

24 Chapter 8. Indices and tables

Python Module Index

p
pydriller.domain.commit, 18
pydriller.domain.developer, 21
pydriller.git_repository, 15
pydriller.metrics.process.process_metric,

21
pydriller.repository_mining, 17

25

PyDriller Documentation, Release 1.0

26 Python Module Index

Index

Symbols
__del__() (pydriller.git_repository.GitRepository

method), 15
__init__() (pydriller.domain.commit.Commit

method), 18
__init__() (pydriller.domain.commit.Method

method), 20
__init__() (pydriller.domain.commit.Modification

method), 20
__init__() (pydriller.domain.developer.Developer

method), 21
__init__() (pydriller.git_repository.GitRepository

method), 15
__init__() (pydriller.metrics.process.process_metric.ProcessMetric

method), 21
__init__() (pydriller.repository_mining.RepositoryMining

method), 17
__module__ (pydriller.domain.commit.Commit at-

tribute), 18
__module__ (pydriller.domain.commit.Method at-

tribute), 20
__module__ (pydriller.domain.commit.Modification

attribute), 20
__module__ (pydriller.domain.commit.ModificationType

attribute), 21
__module__ (pydriller.domain.developer.Developer at-

tribute), 21
__module__ (pydriller.git_repository.GitRepository at-

tribute), 15
__module__ (pydriller.metrics.process.process_metric.ProcessMetric

attribute), 22
__module__ (pydriller.repository_mining.RepositoryMining

attribute), 18

A
ADD (pydriller.domain.commit.ModificationType at-

tribute), 21
added (pydriller.domain.commit.Modification attribute),

20

author (pydriller.domain.commit.Commit attribute), 19
author_date (pydriller.domain.commit.Commit at-

tribute), 19
author_timezone (pydriller.domain.commit.Commit

attribute), 19

B
branches (pydriller.domain.commit.Commit attribute),

19

C
checkout() (pydriller.git_repository.GitRepository

method), 15
clear() (pydriller.git_repository.GitRepository

method), 15
Commit (class in pydriller.domain.commit), 18
committer (pydriller.domain.commit.Commit at-

tribute), 19
committer_date (pydriller.domain.commit.Commit

attribute), 19
committer_timezone (py-

driller.domain.commit.Commit attribute),
19

complexity (pydriller.domain.commit.Modification
attribute), 20

COPY (pydriller.domain.commit.ModificationType at-
tribute), 21

count() (pydriller.metrics.process.process_metric.ProcessMetric
method), 22

D
DELETE (pydriller.domain.commit.ModificationType at-

tribute), 21
Developer (class in pydriller.domain.developer), 21
diff_parsed (pydriller.domain.commit.Modification

attribute), 20

F
filename (pydriller.domain.commit.Modification at-

tribute), 20

27

PyDriller Documentation, Release 1.0

files() (pydriller.git_repository.GitRepository
method), 15

G
get_commit() (pydriller.git_repository.GitRepository

method), 15
get_commit_from_gitpython() (py-

driller.git_repository.GitRepository method),
15

get_commit_from_tag() (py-
driller.git_repository.GitRepository method),
16

get_commits_last_modified_lines() (py-
driller.git_repository.GitRepository method),
16

get_commits_modified_file() (py-
driller.git_repository.GitRepository method),
16

get_head() (pydriller.git_repository.GitRepository
method), 16

get_list_commits() (py-
driller.git_repository.GitRepository method),
16

get_tagged_commits() (py-
driller.git_repository.GitRepository method),
16

git (pydriller.git_repository.GitRepository attribute), 16
GitRepository (class in pydriller.git_repository), 15

H
hash (pydriller.domain.commit.Commit attribute), 19

I
in_main_branch (pydriller.domain.commit.Commit

attribute), 19

M
merge (pydriller.domain.commit.Commit attribute), 19
Method (class in pydriller.domain.commit), 20
methods (pydriller.domain.commit.Modification at-

tribute), 20
Modification (class in pydriller.domain.commit), 20
modifications (pydriller.domain.commit.Commit at-

tribute), 19
ModificationType (class in py-

driller.domain.commit), 21
MODIFY (pydriller.domain.commit.ModificationType at-

tribute), 21
msg (pydriller.domain.commit.Commit attribute), 19

N
new_path (pydriller.domain.commit.Modification at-

tribute), 20

nloc (pydriller.domain.commit.Modification attribute),
20

O
old_path (pydriller.domain.commit.Modification at-

tribute), 20

P
parents (pydriller.domain.commit.Commit attribute),

19
parse_diff() (pydriller.git_repository.GitRepository

method), 17
ProcessMetric (class in py-

driller.metrics.process.process_metric), 21
project_name (pydriller.domain.commit.Commit at-

tribute), 19
pydriller.domain.commit (module), 18
pydriller.domain.developer (module), 21
pydriller.git_repository (module), 15
pydriller.metrics.process.process_metric

(module), 21
pydriller.repository_mining (module), 17

R
removed (pydriller.domain.commit.Modification at-

tribute), 21
RENAME (pydriller.domain.commit.ModificationType at-

tribute), 21
repo (pydriller.git_repository.GitRepository attribute),

17
RepositoryMining (class in py-

driller.repository_mining), 17
reset() (pydriller.git_repository.GitRepository

method), 17

T
token_count (pydriller.domain.commit.Modification

attribute), 21
total_commits() (py-

driller.git_repository.GitRepository method),
17

traverse_commits() (py-
driller.repository_mining.RepositoryMining
method), 18

U
UNKNOWN (pydriller.domain.commit.ModificationType

attribute), 21

28 Index

	Overview / Install
	Requirements
	Installing PyDriller
	Source Code
	How to cite PyDriller

	Getting Started
	Configuration
	Selecting projects to analyze
	Selecting the Commit Range
	Filtering commits
	Other Configurations
	Git Diff Algorithms

	Commit Object
	Modifications
	GitRepository
	API Reference
	GitRepository
	RepositoryMining
	Commit
	Developer
	Process Metrics

	Indices and tables
	Python Module Index
	Index

