

PyDriller documentation!

	Overview / Install
	Requirements

	Installing PyDriller

	Source Code

	How to cite PyDriller

	Getting Started

	Configuration
	Selecting projects to analyze

	Selecting the Commit Range

	Filtering commits

	Other Configurations

	Git Diff Algorithms

	Commit Object

	Modifications

	GitRepository

	Delta Maintainability
	Background

	Definition

	Properties

	Example usage

	Under the hood

	Relation to SIG DMM

	References

	Process Metrics
	Change Set

	Code Churn

	Commits Count

	Contributors Count

	Contributors Experience

	Hunks Count

	Lines Count

	API Reference
	GitRepository

	RepositoryMining

	Commit

	Developer

	Process Metrics

Indices and tables

	Index

	Module Index

	Search Page

Overview / Install

PyDriller is a Python framework that helps developers on mining software repositories. With PyDriller you can easily extract information from any Git repository, such as commits, developers, modifications, diffs, and source codes, and quickly export CSV files.

[image: _images/mygif.gif]

Requirements

	Python [https://www.python.org] 3.4 or newer

	Git [https://git-scm.com/]

Installing PyDriller

Installing PyDriller is easily done using pip [https://pip.pypa.io/en/latest/installing.html]. Assuming it is installed, just run the following from the command-line:

pip install pydriller

This command will download the latest version of GitPython from the
Python Package Index [http://pypi.python.org/pypi/GitPython] and install it
to your system. This will also install the necessary dependencies.

Source Code

PyDriller’s git repo is available on GitHub, which can be browsed at:

	https://github.com/ishepard/pydriller

and cloned using:

$ git clone https://github.com/ishepard/pydriller
$ cd pydriller

Optionally (but suggested), make use of virtualenv:

$ virtualenv -p python3 venv
$ source venv/bin/activate

Install the requirements:

$ pip install -r requirements.txt
$ pip install -r test-requirements.txt
$ unzip test-repos.zip

and run the tests using pytest:

$ pytest

How to cite PyDriller

@inbook{PyDriller,
 title = "PyDriller: Python Framework for Mining Software Repositories",
 abstract = "Software repositories contain historical and valuable information about the overall development of software systems. Mining software repositories (MSR) is nowadays considered one of the most interesting growing fields within software engineering. MSR focuses on extracting and analyzing data available in software repositories to uncover interesting, useful, and actionable information about the system. Even though MSR plays an important role in software engineering research, few tools have been created and made public to support developers in extracting information from Git repository. In this paper, we present PyDriller, a Python Framework that eases the process of mining Git. We compare our tool against the state-of-the-art Python Framework GitPython, demonstrating that PyDriller can achieve the same results with, on average, 50% less LOC and significantly lower complexity.URL: https://github.com/ishepard/pydrillerMaterials: https://doi.org/10.5281/zenodo.1327363Pre-print: https://doi.org/10.5281/zenodo.1327411",
 author = "Spadini, Davide and Aniche, Maurício and Bacchelli, Alberto",
 year = "2018",
 doi = "10.1145/3236024.3264598",
 booktitle = "The 26th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)",
}

Getting Started

Using PyDriller is very simple. You only need to create RepositoryMining: this class will receive in input the path to the repository and will return a generator that iterates over the commits. For example:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
 print('Hash {}, author {}'.format(commit.hash, commit.author.name))

will print the name of the developers for each commit.

Inside RepositoryMining, you will have to configure which projects to analyze, for which commits, for which dates etc. For all the possible configurations, have a look at Configuration.

We can also pass a list of repositories (both local and remote), and PyDriller will analyze sequentially. In case of a remote repository, PyDriller will clone it in a temporary folder, and delete it afterwards. For example:

urls = ["repos/repo1", "repos/repo2", "https://github.com/ishepard/pydriller.git", "repos/repo3", "https://github.com/apache/hadoop.git"]
for commit in RepositoryMining(path_to_repo=urls).traverse_commits():
 print("Project {}, commit {}, date {}".format(
 commit.project_path, commit.hash, commit.author_date))

Let’s make another example: print all the modified files for every commit. This does the magic:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
 for modification in commit.modifications:
 print('Author {} modified {} in commit {}'.format(commit.author.name, modification.filename, commit.hash))

That’s it!

Behind the scenes, PyDriller opens the Git repository and extracts all the necessary information. Then, the framework returns a generator that can iterate over the commits.

Furthermore, PyDriller can calculate structural metrics of every file changed in a commit. To calculate these metrics, Pydriller relies on Lizard [https://github.com/terryyin/lizard], a powerful tool that can analyze source code of many different programming languages, both at class and method level!

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
 for mod in commit.modifications:
 print('{} has complexity of {}, and it contains {} methods'.format(
 mod.filename, mod.complexity, len(mod.methods)))

Configuration

One of the main advantage of using PyDriller to mine software repositories, is that it is highly configurable. We will now see all the options that once can pass to RepositoryMining.

Selecting projects to analyze

The only required parameter of RepositoryMining is path_to_repo, which specifies the repo(s) to analyze. It must be of type str or List[str], meaning analyze only one repository or more than one.

Furthermore, PyDriller supports both local and remote repositories: if you pass an URL, PyDriller will automatically create a temporary folder, clone the repository, run the study, and finally delete the temporary folder.

For example, the following are all possible inputs for RepositoryMining:

analyze only 1 local repository
url = "repos/pydriller/"

analyze 2 local repositories
url = ["repos/pydriller/", "repos/anotherrepo/"]

analyze both local and remote
url = ["repos/pydriller/", "https://github.com/apache/hadoop.git", "repos/anotherrepo"]

analyze 1 remote repository
url = "https://github.com/apache/hadoop.git"

To keep track of what project PyDriller is analyzing, the Commit object has a property called project_name.

Selecting the Commit Range

By default, PyDriller analyzes all the commits in the repository. However, filters can be applied to RepositoryMining to visit only specific commits.

	single (str): single hash of the commit. The visitor will be called only on this commit

FROM:

	since (datetime): only commits after this date will be analyzed

	from_commit (str): only commits after this commit hash will be analyzed

	from_tag (str): only commits after this commit tag will be analyzed

TO:

	to (datetime): only commits up to this date will be analyzed

	to_commit (str): only commits up to this commit hash will be analyzed

	to_tag (str): only commits up to this commit tag will be analyzed

ORDER:

	order (str): one between ‘date-order’, ‘author-date-order’, ‘topo-order’, and ‘reverse’ (see this [https://git-scm.com/docs/git-rev-list#_commit_ordering] for more information). By default, PyDriller uses the flag “–reverse”, and it returns the commits in reversed chronological order (from the oldest to the newest). If you need viceversa instead (from the newest to the oldest), use “order=’reverse’”.

Examples:

Analyze single commit
RepositoryMining('path/to/the/repo', single='6411e3096dd2070438a17b225f44475136e54e3a').traverse_commits()

Since 8/10/2016
RepositoryMining('path/to/the/repo', since=datetime(2016, 10, 8, 17, 0, 0)).traverse_commits()

Between 2 dates
dt1 = datetime(2016, 10, 8, 17, 0, 0)
dt2 = datetime(2016, 10, 8, 17, 59, 0)
RepositoryMining('path/to/the/repo', since=dt1, to=dt2).traverse_commits()

Between tags
from_tag = 'tag1'
to_tag = 'tag2'
RepositoryMining('path/to/the/repo', from_tag=from_tag, to_tag=to_tag).traverse_commits()

Up to a date
dt1 = datetime(2016, 10, 8, 17, 0, 0, tzinfo=to_zone)
RepositoryMining('path/to/the/repo', to=dt1).traverse_commits()

!!!!! ERROR !!!!! THIS IS NOT POSSIBLE
RepositoryMining('path/to/the/repo', from_tag=from_tag, from_commit=from_commit).traverse_commits()

IMPORTANT: it is not possible to configure more than one filter of the same category (for example, more than one from). It is also not possible to have the single filter together with other filters!

Filtering commits

PyDriller comes with a set of common commit filters that you can apply:

	only_in_branch (str): only analyses commits that belong to this branch.

	only_no_merge (bool): only analyses commits that are not merge commits.

	only_authors (List[str]): only analyses commits that are made by these authors. The check is made on the username, NOT the email.

	only_commits (List[str]): only these commits will be analyzed.

	only_releases (bool): only commits that are tagged (“release” is a term of GitHub, does not actually exist in Git)

	filepath (str): only commits that modified this file will be analyzed.

	only_modifications_with_file_types (List[str]): only analyses commits in which at least one modification was done in that file type, e.g., if you pass “.java”, it will visit only commits in which at least one Java file was modified; clearly, it will skip other commits (e.g., commits that did not modify Java files).

Examples:

Only commits in branch1
RepositoryMining('path/to/the/repo', only_in_branch='branch1').traverse_commits()

Only commits in branch1 and no merges
RepositoryMining('path/to/the/repo', only_in_branch='branch1', only_no_merge=True).traverse_commits()

Only commits of author "ishepard" (yeah, that's me)
RepositoryMining('path/to/the/repo', only_authors=['ishepard']).traverse_commits()

Only these 3 commits
RepositoryMining('path/to/the/repo', only_commits=['hash1', 'hash2', 'hash3']).traverse_commits()

Only commit that modified "Matricula.javax"
RepositoryMining('path/to/the/repo', filepath='Matricula.javax').traverse_commits()

Only commits that modified a java file
RepositoryMining('path/to/the/repo', only_modifications_with_file_types=['.java']).traverse_commits()

Other Configurations

Some git commands, such as git diff, can be customized by the user. In this section, we report some of the customization
that can be used within pydriller.

	histogram (bool): uses git diff --histogram instead of the normal git. See Git Diff Algorithms.

Git Diff Algorithms

Git offers four different algorithms in git diff:

	Myers (default)

	Minimal (improved Myers)

	Patience (try to give contextual diff)

	Histogram (kind of enhanced patience)

Differences between four diff algorithms [https://git-scm.com/docs/git-diff#Documentation/git-diff.txt---diff-algorithmpatienceminimalhistogrammyers).]

Based on the comparison between Myers and Histogram in a study by Nugroho, et al (2019) [https://doi.org/10.1007/s10664-019-09772-z], various diff algorithms in the git diff command produced unequal diff outputs.
From the result of patches analysis, they found that Histogram is better than Myers to show the changes of code that can be expected to recover the changing operations.
Thus, in this tool, we implement histogram diff algorithm to consider differences in source code.

Commit Object

A Commit object has all the information of a Git commit, and much more. More specifically:

	hash (str): hash of the commit

	msg (str): commit message

	author (Developer): commit author (name, email)

	author_date (datetime): authored date

	author_timezone (int): author timezone (expressed in seconds from epoch)

	committer (Developer): commit committer (name, email)

	committer_date (datetime): commit date

	committer_timezone (int): commit timezone (expressed in seconds from epoch)

	branches (List[str]): List of branches that contain this commit

	in_main_branch (Bool): True if the commit is in the main branch

	merge (Bool): True if the commit is a merge commit

	modifications (List[Modifications]): list of modified files in the commit (see Modifications)

	parents (Set[str]): list of the commit parents

	project_name (str): project name

	project_path (str): project path

Example:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
 print(
 'The commit {} has been modified by {}, '
 'committed by {} in date {}'.format(
 commit.hash,
 commit.author.name,
 commit.committer.name,
 commit.committer_date
)
)

Modifications

You can get the list of modified files, as well as their diffs and current source code. To that, all you have to do is to get the list of Modifications that exists inside Commit. A modification object has the following fields:

	old_path: old path of the file (can be _None_ if the file is added)

	new_path: new path of the file (can be _None_ if the file is deleted)

	filename: return only the filename (e.g., given a path-like-string such as “/Users/dspadini/pydriller/myfile.py” returns “myfile.py”)

	change_type: type of the change: can be Added, Deleted, Modified, or Renamed.

	diff: diff of the file as Git presents it (e.g., starting with @@ xx,xx @@).

	diff_parsed: diff parsed in a dictionary containing the added and deleted lines. The dictionary has 2 keys: “added” and “deleted”, each containing a list of Tuple (int, str) corresponding to (number of line in the file, actual line).

	added: number of lines added

	removed: number of lines removed

	source_code: source code of the file (can be _None_ if the file is deleted)

	source_code_before: source code of the file before the change (can be _None_ if the file is added)

	methods: list of methods of the file. The list might be empty if the programming language is not supported or if the file is not a source code file. These are the methods after the change.

	methods_before: list of methods of the file before the change (e.g., before the commit.)

	changed_methods: subset of _methods_ containing only the changed methods.

	nloc: Lines Of Code (LOC) of the file

	complexity: Cyclomatic Complexity of the file

	token_count: Number of Tokens of the file

For example:

for commit in RepositoryMining('path/to/the/repo').traverse_commits():
 for m in commit.modifications:
 print(
 "Author {}".format(commit.author.name),
 " modified {}".format(m.filename),
 " with a change type of {}".format(m.change_type.name),
 " and the complexity is {}".format(m.complexity)
)

GitRepository

GitRepository is a wrapper for the most common utilities of Git. It receives in input
the path to repository, and it takes care of the rest.
For example, with GitRepository you can checkout a specific commit:

gr = GitRepository('test-repos/git-1/')
gr.checkout('a7053a4dcd627f5f4f213dc9aa002eb1caf926f8')

However, be careful! Git checkout changes the state of the repository on the hard
disk, hence you should not use this command if other processes (maybe threads? or multiple
repository mining?) read from the same repository.

GitRepository also contains a function to parse the a diff, very useful to obtain the list
of lines added or deleted for future analysis. For example, if we run this:

diff = '@@ -2,6 +2,7 @@ aa'+\
 ' bb'+\
 '-cc'+\
 ' log.info(\"aa\")'+\
 '+log.debug(\"b\")'+\
 ' dd'+\
 ' ee'+\
 ' ff'
gr = GitRepository('test-repos/test1')
parsed_lines = gr.parse_diff(diff)

added = parsed_lines['added']
deleted = parsed_lines['deleted']

print('Added: {}'.format(added)) # result: Added: [(4, 'log.debug("b")')]
print('Deleted: {}'.format(deleted)) # result: Deleted: [(3, 'cc')]

the result is:

Added: [(4, 'log.debug("b")')]
Deleted: [(3, 'cc')]

Another very useful API (especially for researchers ;)) is the one that, given a commit, allows you to retrieve
all the commits that last “touched” the modified lines of the file (if you pass a bug fixing commit, it will retrieve the bug inducing).

PS: Since PyDriller 1.9, this function can be customized to use “git hyper-blame” (check this [https://commondatastorage.googleapis.com/chrome-infra-docs/flat/depot_tools/docs/html/depot_tools_tutorial.html#_setting_up] for more info).
Git hyper blame can be instructed to skip specific commits (like commits that refactor the code).

Let’s see an example:

commit abc modified line 1 of file A
commit def modified line 2 of file A
commit ghi modified line 3 of file A
commit lmn deleted lines 1 and 2 of file A

gr = GitRepository('test-repos/test5')

commit = gr.getcommit('lmn')
buggy_commits = gr.get_commits_last_modified_lines(commit)
print(buggy_commits) # result: (abc, def)

Since in commit lmn 2 lines were deleted (line 1 and 2), PyDriller can retrieve the commits in which those lines
were last modified (in our example, commit abc and def).

Checkout the API reference of this class for the complete list of the available functions.

Delta Maintainability

Background

To assess the maintainability implications of commits, PyDriller offers an implementation of the Open Source Delta Maintainability Model (OS-DMM). The underlying Delta Maintainability Model was originally described in a paper that appeared at TechDebt 2019 [DiBiase2019].
A commercially available implementation supporting over 100 different languages with fine-grained analysis is offered by the Software Improvement Group [https://www.softwareimprovementgroup.com/] (SIG).

The Open Source implementation included in PyDriller offers a partial implementation suitable for research experiments and measurements for systems written in common programming languages already supported by PyDriller. While the git-functionality of PyDriller is language agnostic, the metrics (such as method size and cyclomatic complexity) it supports require language-specific implementations – for which PyDriller relies on Lizard [https://github.com/terryyin/lizard].

The OS-DMM implementation extends the PyDriller metrics with three commit-level metrics related to risk in size, complexity, and interfacing.

Definition

In one sentence, the delta-maintainability metric is the proportion of low-risk change in a commit. The resulting value ranges from 0.0 (all changes are risky) to 1.0 (all changes are low risk). It rewards making methods better, and penalizes making things worse.

The starting point for the DMM is a risk profile [Heitlager2007]. Traditionally, risk profiles categorize methods (or, more generally, also referred to as units) into four bins: low, medium, high, and very high risk methods. The risk profile of a class then is a 4-tuple (l, m, h, v) representing the amount of code (number of lines) in each of the four categories.

For simplicity, in the context of the DMM, only two bins are used: low risk, and non-low (medium, high, or very high) risk. To transfer risk profiles from file (or system) level to commit level, we consider delta risk profiles. These are pairs (dl, dh), with dl being the increase (or decrease) of low risk code, and dh the increase (or decrease) in high risk code.

The delta risk profile can then be used to determine good and bad change:

	Increases in low risk code are good, but increases in high risk code are bad.

	Decreases in high risk code are good, and decreases in low risk code are good only if no high risk code is added instead, and bad otherwise.

The dmm value is then computed as: good change / (good change + bad change).

Properties

The DMM can be used on arbitrary properties that can be determined at method (unit) level. The PyDriller OS-DMM implementation supports three properties:

	Unit size: Method length in lines of code; low risk threshold 15 lines.

	Unit complexity: Method cyclomatic complexity; low risk threshold 5.

	Unit interfacing: Method number of parameters: low risk threshold 2.

The original DMM paper also used coupling and cloned code as properties, but these are not easily computed per commit with the Lizard infrastructure. The thresholds are language-independent by design, and have been determined empirically following the procedure described in [Alves2010], using industrial benchmark data collected by SIG [SIG2019].

Example usage

Collecting DMM values from a git repository is straightforward:

from pydriller import RepositoryMining

rm = RepositoryMining("https://github.com/avandeursen/dmm-test-repo")
for commit in rm.traverse_commits():
 print("| {} | {} | {} | {} |".format(
 commit.msg,
 commit.dmm_unit_size,
 commit.dmm_unit_complexity,
 commit.dmm_unit_interfacing
))

The resulting dmm values are proportions with values between 0.0 and 1.0.
Files that are changed in a commit, but which are written in languages not supported by PyDriller (Lizard) are ignored – these are often configuration (.xml, .yaml) or documentation (.txt, .md) files.
If none of the files changed in a commit are in languages supported by Pydriller, the dmm value is None.

Under the hood

The main public API consists of the three dmm_unit_size, dmm_unit_complexity, and dmm_unit_interfacing properties on the Commit class, as illustrated above.
Under the hood, the DMM implementation can be easily configured or accessed:

	The thresholds are set as separate constants in the Method class;

	The main methods implementing the DMM are parameterized with an enum characterizing the DMM property of interest.

	There are separate (protected) methods to compute risk profiles and delta-risk profiles at Commit and Modification level, which can be used to collect more detailed information for selected (e.g., lowly rated) commits.

Relation to SIG DMM

PyDriller’s OS-DMM and SIG’s DMM differ in the following ways:

	OS-DMM offers only support for the approximately 15 languages supported by Lizard [https://github.com/terryyin/lizard].

	OS-DMM relies on Lizard for the identification of methods (units) in source files. While for simple cases SIG and Lizard tooling will agree, this may not be the case for more intricate cases involving e.g., lambdas, inner classes, nested functions, etc.

	OS-DMM relies on Lizard for simple line counting, which also counts white space. SIG’s DMM on the other hand ignores blank lines.

	OS-DMM uses the thresholds as empirically determined by SIG, based on SIG’s measurement methodology [Alves2010]. OS-DMM’s Lizard-based metric values may be different, and hence may classify methods in different risk bins for methods close to the thresholds.

Consequently, individual DMM values are likely to differ a few percentage points between the SIG DMM and OS-DMM implementations. However, in terms of trends and statistical analysis, the outcomes will likely be very similar.
Therefore:

	For research purposes, we recommend the fully open PyDriller implementation ensuring reproducible results.

	For commercial purposes including day to day monitoring of maintainability at commit, code, file, component, project, and portfolio level, we recommend the more robust SIG implementation.

References

	DiBiase2019

	Marco di Biase, Ayushi Rastogi, Magiel Bruntink, and Arie van Deursen. The Delta Maintainability Model: measuring maintainability of fine-grained code changes. IEEE/ACM International Conference on Technical Debt (TechDebt) at ICSE 2019, pp 113-122 (preprint [https://pure.tudelft.nl/portal/en/publications/the-delta-maintainability-model-measuring-maintainability-of-finegrained-code-changes(6ff67dee-2781-47d7-916f-bd36c5b61beb).html], doi [https://doi.org/10.1109/TechDebt.2019.00030]).

	Heitlager2007

	Ilja Heitlager, Tobias Kuipers, and Joost Visser. A Practical Model for Measuring Maintainability. 6th International Conference on the Quality of Information and Communications Technology, QUATIC 2007, IEEE, pp 30-39 (preprint [http://wiki.di.uminho.pt/twiki/pub/Personal/Joost/PublicationList/HeitlagerKuipersVisser-Quatic2007.pdf], doi [https://doi.org/10.1109/QUATIC.2007.8])

	Alves2010(1,2)

	Tiaga Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from benchmark data. IEEE International Conference on Software Maintenance (ICSM), pages 1–10. IEEE, 2010 (preprint [http://wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/icsm10rt-alves.pdf], doi [https://doi.org/10.1109/ICSM.2010.5609747]).

	SIG2019

	Reinier Vis, Dennis Bijslma, and Haiyun Xu. SIG/TÜViT Evaluation Criteria Trusted Product Maintainability: Guidance for producers. Version 11.0. Software Improvement Group, 2019 (online [https://www.softwareimprovementgroup.com/wp-content/uploads/2019/11/20190919-SIG-TUViT-Evaluation-Criteria-Trusted-Product-Maintainability-Guidance-for-producers.pdf]).

Process Metrics

Process metrics capture aspects of the development process rather than aspects about the code itself.
From release 1.11 PyDriller can calculate change_set, code churn, commits count, contributors count, contributors experience, history complexity, hunks count, lines count and minor contributors. Everything in just one line!

The metrics can be run between two commits (setting up the parameters from_commit and to_commit) or between two dates (setting up the parameters since and to)

Below an example of how call the metrics.

Change Set

This metric measures the of files committed together.

The class ChangeSet has two methods:

	max() to count the maximum number of files committed together;

	avg() to count the average number of files committed together. Note: The average value is rounded off to the nearest integer.

For example:

from pydriller.metrics.process.change_set import ChangeSet
metric = ChangeSet(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')

maximum = metric.max()
average = metric.avg()
print('Maximum number of files committed together: {}'.format(maximum))
print('Average number of files committed together: {}'.format(average))

will print the maximum and average number of files committed together in the evolution period [from_commit, to_commit].

Note: differently from the other metrics below, the scope of this metrics is the evolution period rather than the single files.

It is possible to specify the dates as follows:

from datetime import datetime
from pydriller.metrics.process.change_set import ChangeSet
metric = ChangeSet(path_to_repo='path/to/the/repo',
 since=datetime(2019, 1, 1),
 to=datetime(2019, 12, 31))

maximum = metric.max()
average = metric.avg()
print('Maximum number of files committed together: {}'.format(maximum))
print('Average number of files committed together: {}'.format(average))

The code above will print the maximum and average number of files committed together between the 1st January 2019 and 31st December 2019.

Code Churn

This metric measures the code churns of a file.
A code churn is the sum of (added lines - removed lines) across the analyzed commits.

The class CodeChurn has three methods:

	count() to count the total size of code churns of a file;

	max() to count the maximum size of a code churn of a file;

	avg() to count the average size of a code churn of a file. Note: The average value is rounded off to the nearest integer.

For example:

from pydriller.metrics.process.code_churn import CodeChurn
metric = CodeChurn(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')
files_count = metric.count()
files_max = metric.max()
files_avg = metric.avg()
print('Total code churn for each file: {}'.format(files_count))
print('Maximum code churn for each file: {}'.format(files_max))
print('Average code churn for each file: {}'.format(files_avg))

will print the total, maximum and average number of code churn for each modified file in the evolution period [from_commit, to_commit].

Commits Count

This metric measures the number of commits made to a file.

The class CommitCount has one method:

	count() to count the number of commits to a file.

For example:

from pydriller.metrics.process.commits_count import CommitsCount
metric = CommitsCount(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')
files = metric.count()
print('Files: {}'.format(files))

will print the number of commits for each modified file in the evolution period [from_commit, to_commit].

Contributors Count

This metric measures the number of developers that contributed to a file.

The class ContributorsCount has two methods:

	count() to count the number of contributors who modified a file;

	count_minor() to count the number of minor contributors who modified a file, i.e., those that contributed less than 5% to the file.

For example:

from pydriller.metrics.process.contributors_count import ContributorsCount
metric = ContributorsCount(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')
count = metric.count()
minor = metric.count_minor()
print('Number of contributors per file: {}'.format(count))
print('Number of "minor" contributors per file: {}'.format(minor))

will print the number of developers that contributed to each of the modified file in the evolution period [from_commit, to_commit] and the number of developers that contributed less than 5% to each of the modified file in the evolution period [from_commit, to_commit].

Contributors Experience

This metric measures the percetage of the lines authored by the highest contributor of a file.

The class ContriutorExperience has one method:

	count() to count the number of lines authored by the highest contributor of a file;

For example:

from pydriller.metrics.process.contributors_experience import ContributorsExperience
metric = ContributorsExperience(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')
files = metric.count()
print('Files: {}'.format(files))

will print the percentage of the lines authored by the highest contributor for each of the modified file in the evolution period [from_commit, to_commit].

Hunks Count

This metric measures the number of hunks made to a file.
As a hunk is a continuous block of changes in a diff, this number assesses how fragmented the commit file is (i.e. lots of changes all over the file versus one big change).

The class HunksCount has one method:

	count() to count the median number of hunks of a file.

For example:

from pydriller.metrics.process.hunks_count import HunksCount
metric = HunksCount(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')
files = metric.count()
print('Files: {}'.format(files))

will print the median number of hunks for each of the modified file in the evolution period [from_commit, to_commit].

Lines Count

This metric measures the number of added and removed lines in a file.
The class LinesCount has seven methods:

	count() to count the total number of added and removed lines for each modified file;

	count_added(), max_added() and avg_added() to count the total, maximum and average number of added lines for each modified file;

	count_removed(), max_removed() and avg_removed() to count the total, maximum and average number of removed lines for each modified file.

Note: The average values are rounded off to the nearest integer.

For example:

from pydriller.metrics.process.lines_count import LinesCount
metric = LinesCount(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')

added_count = metric.count_added()
added_max = metric.max_added()
added_avg = metric.avg_added()
print('Total lines added per file: {}'.format(added_count))
print('Maximum lines added per file: {}'.format(added_max))
print('Average lines added per file: {}'.format(added_avg))

will print the total, maximum and average number of lines added for each modified file in the evolution period [from_commit, to_commit].

While:

from pydriller.metrics.process.lines_count import LinesCount
metric = LinesCount(path_to_repo='path/to/the/repo',
 from_commit='from commit hash',
 to_commit='to commit hash')

removed_count = metric.count_removed()
removed_max = metric.max_removed()
removed_avg = metric.avg_removed()
print('Total lines removed per file: {}'.format(removed_count))
print('Maximum lines removed per file: {}'.format(removed_max))
print('Average lines removed per file: {}'.format(removed_avg))

will print the total, maximum and average number of lines removed for each modified file in the evolution period [from_commit, to_commit].

API Reference

GitRepository

This module includes 1 class, GitRepository, representing a repository in Git.

	
class pydriller.git_repository.GitRepository(path: str, conf=None)

	Class representing a repository in Git. It contains most of the logic of
PyDriller: obtaining the list of commits, checkout, reset, etc.

	
__del__()

	

	
__init__(path: str, conf=None)

	Init the Git RepositoryMining.

	Parameters

	path (str) – path to the repository

	
__module__ = 'pydriller.git_repository'

	

	
checkout(_hash: str) → None

	Checkout the repo at the speficied commit.
BE CAREFUL: this will change the state of the repo, hence it should
not be used with more than 1 thread.

	Parameters

	_hash – commit hash to checkout

	
clear()

	According to GitPython’s documentation, sometimes it leaks resources.
This holds especially for Windows users. Hence, we need to clear the
cache manually.

	
files() → List[str]

	Obtain the list of the files (excluding .git directory).

	Returns

	List[str], the list of the files

	
get_commit(commit_id: str) → pydriller.domain.commit.Commit

	Get the specified commit.

	Parameters

	commit_id (str) – hash of the commit to analyze

	Returns

	Commit

	
get_commit_from_gitpython(commit: git.objects.commit.Commit) → pydriller.domain.commit.Commit

	Build a PyDriller commit object from a GitPython commit object.
This is internal of PyDriller, I don’t think users generally will need
it.

	Parameters

	commit (GitCommit) – GitPython commit

	Returns

	Commit commit: PyDriller commit

	
get_commit_from_tag(tag: str) → pydriller.domain.commit.Commit

	Obtain the tagged commit.

	Parameters

	tag (str) – the tag

	Returns

	Commit commit: the commit the tag referred to

	
get_commits_last_modified_lines(commit: pydriller.domain.commit.Commit, modification: pydriller.domain.commit.Modification = None, hashes_to_ignore_path: str = None) → Dict[str, Set[str]]

	Given the Commit object, returns the set of commits that last
“touched” the lines that are modified in the files included in the
commit. It applies SZZ.

The algorithm works as follow: (for every file in the commit)

1- obtain the diff

2- obtain the list of deleted lines

3- blame the file and obtain the commits were those lines were added

Can also be passed as parameter a single Modification, in this case
only this file will be analyzed.

	Parameters

	
	commit (Commit) – the commit to analyze

	modification (Modification) – single modification to analyze

	hashes_to_ignore_path (str) – path to a file containing hashes of
commits to ignore.

	Returns

	the set containing all the bug inducing commits

	
get_commits_modified_file(filepath: str) → List[str]

	Given a filepath, returns all the commits that modified this file
(following renames).

	Parameters

	filepath (str) – path to the file

	Returns

	the list of commits’ hash

	
get_head() → pydriller.domain.commit.Commit

	Get the head commit.

	Returns

	Commit of the head commit

	
get_list_commits(rev='HEAD', **kwargs) → Generator[[pydriller.domain.commit.Commit, None], None]

	Return a generator of commits of all the commits in the repo.

	Returns

	Generator[Commit], the generator of all the commits in the
repo

	
get_tagged_commits()

	Obtain the hash of all the tagged commits.

	Returns

	list of tagged commits (can be empty if there are no tags)

	
git

	GitPython object Git.

	Returns

	Git

	
repo

	GitPython object Repo.

	Returns

	Repo

	
reset() → None

	Reset the state of the repo, checking out the main branch and
discarding
local changes (-f option).

	
total_commits() → int

	Calculate total number of commits.

	Returns

	the total number of commits

RepositoryMining

This module includes 1 class, RepositoryMining, main class of PyDriller.

	
class pydriller.repository_mining.RepositoryMining(path_to_repo: Union[str, List[str]], single: str = None, since: datetime.datetime = None, to: datetime.datetime = None, from_commit: str = None, to_commit: str = None, from_tag: str = None, to_tag: str = None, include_refs: bool = False, include_remotes: bool = False, reversed_order: bool = False, only_in_branch: str = None, only_modifications_with_file_types: List[str] = None, only_no_merge: bool = False, only_authors: List[str] = None, only_commits: List[str] = None, only_releases: bool = False, filepath: str = None, histogram_diff: bool = False, skip_whitespaces: bool = False, clone_repo_to: str = None, order: str = None)

	This is the main class of PyDriller, responsible for running the study.

	
__init__(path_to_repo: Union[str, List[str]], single: str = None, since: datetime.datetime = None, to: datetime.datetime = None, from_commit: str = None, to_commit: str = None, from_tag: str = None, to_tag: str = None, include_refs: bool = False, include_remotes: bool = False, reversed_order: bool = False, only_in_branch: str = None, only_modifications_with_file_types: List[str] = None, only_no_merge: bool = False, only_authors: List[str] = None, only_commits: List[str] = None, only_releases: bool = False, filepath: str = None, histogram_diff: bool = False, skip_whitespaces: bool = False, clone_repo_to: str = None, order: str = None)

	Init a repository mining. The only required parameter is
“path_to_repo”: to analyze a single repo, pass the absolute path to
the repo; if you need to analyze more repos, pass a list of absolute
paths.

Furthermore, PyDriller supports local and remote repositories: if
you pass a path to a repo, PyDriller will run the study on that
repo; if you pass an URL, PyDriller will clone the repo in a
temporary folder, run the study, and delete the temporary folder.

	Parameters

	
	path_to_repo (Union[str,List[str]]) – absolute path (or list of
absolute paths) to the repository(ies) to analyze

	single (str) – hash of a single commit to analyze

	since (datetime) – starting date

	to (datetime) – ending date

	from_commit (str) – starting commit (only if since is None)

	to_commit (str) – ending commit (only if to is None)

	from_tag (str) – starting the analysis from specified tag (only
if since and from_commit are None)

	to_tag (str) – ending the analysis from specified tag (only if
to and to_commit are None)

	include_refs (bool) – whether to include refs and HEAD in commit analysis

	include_remotes (bool) – whether to include remote commits in analysis

	reversed_order (bool) – whether the commits should be analyzed
in reversed order (DEPRECATED)

	only_in_branch (str) – only commits in this branch will be analyzed

	only_modifications_with_file_types (List[str]) – only
modifications with that file types will be analyzed

	only_no_merge (bool) – if True, merges will not be analyzed

	only_authors (List[str]) – only commits of these authors will be
analyzed (the check is done on the username, NOT the email)

	only_commits (List[str]) – only these commits will be analyzed

	filepath (str) – only commits that modified this file will be
analyzed

	order (str) – order of commits. It can be one of: ‘date-order’,
‘author-date-order’, ‘topo-order’, or ‘reverse’. Default is reverse.

	
__module__ = 'pydriller.repository_mining'

	

	
traverse_commits() → Generator[[pydriller.domain.commit.Commit, None], None]

	Analyze all the specified commits (all of them by default), returning
a generator of commits.

Commit

This module contains all the classes regarding a specific commit, such as
Commit, Modification,
ModificationType and Method.

	
class pydriller.domain.commit.Commit(commit: git.objects.commit.Commit, conf)

	Class representing a Commit. Contains all the important information such
as hash, author, dates, and modified files.

	
__init__(commit: git.objects.commit.Commit, conf) → None

	Create a commit object.

	Parameters

	
	commit – GitPython Commit object

	conf – Configuration class

	
__module__ = 'pydriller.domain.commit'

	

	
author

	Return the author of the commit as a Developer object.

	Returns

	author

	
author_date

	Return the authored datetime.

	Returns

	datetime author_datetime

	
author_timezone

	Author timezone expressed in seconds from epoch.

	Returns

	int timezone

	
branches

	Return the set of branches that contain the commit.

	Returns

	set(str) branches

	
committer

	Return the committer of the commit as a Developer object.

	Returns

	committer

	
committer_date

	Return the committed datetime.

	Returns

	datetime committer_datetime

	
committer_timezone

	Author timezone expressed in seconds from epoch.

	Returns

	int timezone

	
dmm_unit_complexity

	Return the Delta Maintainability Model (DMM) metric value for the unit complexity property.

It represents the proportion (between 0.0 and 1.0) of maintainability improving
change, when considering the cyclomatic complexity of the modified methods.

It rewards (value close to 1.0) modifications to low-risk (low complexity) methods,
or spliting risky (highly complex) ones.
It penalizes (value close to 0.0) working on methods that remain complex
or get more complex.

	Returns

	The DMM value (between 0.0 and 1.0) for method complexity in this commit.
or None if none of the programming languages in the commit are supported.

	
dmm_unit_interfacing

	Return the Delta Maintainability Model (DMM) metric value for the unit interfacing property.

It represents the proportion (between 0.0 and 1.0) of maintainability improving
change, when considering the interface (number of parameters) of the modified methods.

It rewards (value close to 1.0) modifications to low-risk (with few parameters) methods,
or spliting risky (with many parameters) ones.
It penalizes (value close to 0.0) working on methods that continue to have
or are extended with too many parameters.

	Returns

	The dmm value (between 0.0 and 1.0) for method interfacing in this commit.
or None if none of the programming languages in the commit are supported.

	
dmm_unit_size

	Return the Delta Maintainability Model (DMM) metric value for the unit size property.

It represents the proportion (between 0.0 and 1.0) of maintainability improving
change, when considering the lengths of the modified methods.

It rewards (value close to 1.0) modifications to low-risk (small) methods,
or spliting risky (large) ones.
It penalizes (value close to 0.0) working on methods that remain large
or get larger.

	Returns

	The DMM value (between 0.0 and 1.0) for method size in this commit,
or None if none of the programming languages in the commit are supported.

	
hash

	Return the SHA of the commit.

	Returns

	str hash

	
in_main_branch

	Return True if the commit is in the main branch, False otherwise.

	Returns

	bool in_main_branch

	
merge

	Return True if the commit is a merge, False otherwise.

	Returns

	bool merge

	
modifications

	Return a list of modified files.

	Returns

	List[Modification] modifications

	
msg

	Return commit message.

	Returns

	str commit_message

	
parents

	Return the list of parents SHAs.

	Returns

	List[str] parents

	
project_name

	Return the project name.

	Returns

	project name

	
class pydriller.domain.commit.DMMProperty

	Maintainability properties of the Delta Maintainability Model.

	
UNIT_COMPLEXITY = 2

	

	
UNIT_INTERFACING = 3

	

	
UNIT_SIZE = 1

	

	
__module__ = 'pydriller.domain.commit'

	

	
class pydriller.domain.commit.Method(func)

	This class represents a method in a class. Contains various information
extracted through Lizard.

	
UNIT_COMPLEXITY_LOW_RISK_THRESHOLD = 5

	Threshold used in the Delta Maintainability Model to establish whether a method
is low risk in terms of its cyclomatic complexity.
The procedure to obtain the threshold is described in the
PyDriller documentation.

	
UNIT_INTERFACING_LOW_RISK_THRESHOLD = 2

	Threshold used in the Delta Maintainability Model to establish whether a method
is low risk in terms of its interface.
The procedure to obtain the threshold is described in the
PyDriller documentation.

	
UNIT_SIZE_LOW_RISK_THRESHOLD = 15

	Threshold used in the Delta Maintainability Model to establish whether a method
is low risk in terms of its size.
The procedure to obtain the threshold is described in the
PyDriller documentation.

	
__init__(func)

	Initialize a method object. This is calculated using Lizard: it parses
the source code of all the modifications in a commit, extracting
information of the methods contained in the file (if the file is a
source code written in one of the supported programming languages).

	
__module__ = 'pydriller.domain.commit'

	

	
is_low_risk(dmm_prop: pydriller.domain.commit.DMMProperty) → bool

	Predicate indicating whether this method is low risk in terms of
the given property.

	Parameters

	dmm_prop – Property according to which this method is considered risky.

	Returns

	True if and only if the method is considered low-risk w.r.t. this property.

	
class pydriller.domain.commit.Modification(old_path: str, new_path: str, change_type: pydriller.domain.commit.ModificationType, diff_and_sc: Dict[str, str])

	This class contains information regarding a modified file in a commit.

	
__init__(old_path: str, new_path: str, change_type: pydriller.domain.commit.ModificationType, diff_and_sc: Dict[str, str])

	Initialize a modification. A modification carries on information
regarding the changed file. Normally, you shouldn’t initialize a new
one.

	
__module__ = 'pydriller.domain.commit'

	

	
added

	Return the total number of added lines in the file.

	Returns

	int lines_added

	
changed_methods

	Return the list of methods that were changed. This analysis
is more complex because Lizard runs twice: for methods before
and after the change

	Returns

	list of methods

	
complexity

	Calculate the Cyclomatic Complexity of the file.

	Returns

	Cyclomatic Complexity of the file

	
diff_parsed

	Returns a dictionary with the added and deleted lines.
The dictionary has 2 keys: “added” and “deleted”, each containing the
corresponding added or deleted lines. For both keys, the value is a
list of Tuple (int, str), corresponding to (number of line in the file,
actual line).

	Returns

	Dictionary

	
filename

	Return the filename. Given a path-like-string (e.g.
“/Users/dspadini/pydriller/myfile.py”) returns only the filename
(e.g. “myfile.py”)

	Returns

	str filename

	
language_supported

	Return whether the language used in the modification can be analyzed by Pydriller.
Languages are derived from the file extension.
Supported languages are those supported by Lizard.

	Returns

	True iff language of this Modification can be analyzed.

	
methods

	Return the list of methods in the file. Every method
contains various information like complexity, loc, name,
number of parameters, etc.

	Returns

	list of methods

	
methods_before

	Return the list of methods in the file before the
change happened. Each method will have all specific
info, e.g. complexity, loc, name, etc.

	Returns

	list of methods

	
new_path

	New path of the file. Can be None if the file is deleted.

	Returns

	str new_path

	
nloc

	Calculate the LOC of the file.

	Returns

	LOC of the file

	
old_path

	Old path of the file. Can be None if the file is added.

	Returns

	str old_path

	
removed

	Return the total number of deleted lines in the file.

	Returns

	int lines_deleted

	
token_count

	Calculate the token count of functions.

	Returns

	token count

	
class pydriller.domain.commit.ModificationType

	Type of Modification. Can be ADD, COPY, RENAME, DELETE, MODIFY or UNKNOWN.

	
ADD = 1

	

	
COPY = 2

	

	
DELETE = 4

	

	
MODIFY = 5

	

	
RENAME = 3

	

	
UNKNOWN = 6

	

	
__module__ = 'pydriller.domain.commit'

	

Developer

This module includes only 1 class, Developer, representing a developer.

	
class pydriller.domain.developer.Developer(name: str, email: str)

	This class represents a developer. We save the email and the name.

	
__init__(name: str, email: str)

	Class to identify a developer.

	Parameters

	
	name (str) – name and surname of the developer

	email (str) – email of the developer

	
__module__ = 'pydriller.domain.developer'

	

Process Metrics

This module contains the abstract class to implement process metrics.

	
class pydriller.metrics.process.process_metric.ProcessMetric(path_to_repo: str, since: datetime.datetime = None, to: datetime.datetime = None, from_commit: str = None, to_commit: str = None)

	Abstract class to implement process metrics

	
__init__(path_to_repo: str, since: datetime.datetime = None, to: datetime.datetime = None, from_commit: str = None, to_commit: str = None)

	
	Path_to_repo

	path to a single repo

	Parameters

	
	since (datetime) – starting date

	to (datetime) – ending date

	from_commit (str) – starting commit (only if since is None)

	to_commit (str) – ending commit (only if to is None)

	
__module__ = 'pydriller.metrics.process.process_metric'

	

	
count()

	Implement the main functionality of the metric

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pydriller	

 	
 	
 pydriller.domain.commit	

 	
 	
 pydriller.domain.developer	

 	
 	
 pydriller.git_repository	

 	
 	
 pydriller.metrics.process.process_metric	

 	
 	
 pydriller.repository_mining	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | T
 | U

_

 	
 	__del__() (pydriller.git_repository.GitRepository method)

 	__init__() (pydriller.domain.commit.Commit method)

 	(pydriller.domain.commit.Method method)

 	(pydriller.domain.commit.Modification method)

 	(pydriller.domain.developer.Developer method)

 	(pydriller.git_repository.GitRepository method)

 	(pydriller.metrics.process.process_metric.ProcessMetric method)

 	(pydriller.repository_mining.RepositoryMining method)

 	
 	__module__ (pydriller.domain.commit.Commit attribute)

 	(pydriller.domain.commit.DMMProperty attribute)

 	(pydriller.domain.commit.Method attribute)

 	(pydriller.domain.commit.Modification attribute)

 	(pydriller.domain.commit.ModificationType attribute)

 	(pydriller.domain.developer.Developer attribute)

 	(pydriller.git_repository.GitRepository attribute)

 	(pydriller.metrics.process.process_metric.ProcessMetric attribute)

 	(pydriller.repository_mining.RepositoryMining attribute)

A

 	
 	ADD (pydriller.domain.commit.ModificationType attribute)

 	added (pydriller.domain.commit.Modification attribute)

 	
 	author (pydriller.domain.commit.Commit attribute)

 	author_date (pydriller.domain.commit.Commit attribute)

 	author_timezone (pydriller.domain.commit.Commit attribute)

B

 	
 	branches (pydriller.domain.commit.Commit attribute)

C

 	
 	changed_methods (pydriller.domain.commit.Modification attribute)

 	checkout() (pydriller.git_repository.GitRepository method)

 	clear() (pydriller.git_repository.GitRepository method)

 	Commit (class in pydriller.domain.commit)

 	committer (pydriller.domain.commit.Commit attribute)

 	
 	committer_date (pydriller.domain.commit.Commit attribute)

 	committer_timezone (pydriller.domain.commit.Commit attribute)

 	complexity (pydriller.domain.commit.Modification attribute)

 	COPY (pydriller.domain.commit.ModificationType attribute)

 	count() (pydriller.metrics.process.process_metric.ProcessMetric method)

D

 	
 	DELETE (pydriller.domain.commit.ModificationType attribute)

 	Developer (class in pydriller.domain.developer)

 	diff_parsed (pydriller.domain.commit.Modification attribute)

 	
 	dmm_unit_complexity (pydriller.domain.commit.Commit attribute)

 	dmm_unit_interfacing (pydriller.domain.commit.Commit attribute)

 	dmm_unit_size (pydriller.domain.commit.Commit attribute)

 	DMMProperty (class in pydriller.domain.commit)

F

 	
 	filename (pydriller.domain.commit.Modification attribute)

 	
 	files() (pydriller.git_repository.GitRepository method)

G

 	
 	get_commit() (pydriller.git_repository.GitRepository method)

 	get_commit_from_gitpython() (pydriller.git_repository.GitRepository method)

 	get_commit_from_tag() (pydriller.git_repository.GitRepository method)

 	get_commits_last_modified_lines() (pydriller.git_repository.GitRepository method)

 	get_commits_modified_file() (pydriller.git_repository.GitRepository method)

 	
 	get_head() (pydriller.git_repository.GitRepository method)

 	get_list_commits() (pydriller.git_repository.GitRepository method)

 	get_tagged_commits() (pydriller.git_repository.GitRepository method)

 	git (pydriller.git_repository.GitRepository attribute)

 	GitRepository (class in pydriller.git_repository)

H

 	
 	hash (pydriller.domain.commit.Commit attribute)

I

 	
 	in_main_branch (pydriller.domain.commit.Commit attribute)

 	
 	is_low_risk() (pydriller.domain.commit.Method method)

L

 	
 	language_supported (pydriller.domain.commit.Modification attribute)

M

 	
 	merge (pydriller.domain.commit.Commit attribute)

 	Method (class in pydriller.domain.commit)

 	methods (pydriller.domain.commit.Modification attribute)

 	methods_before (pydriller.domain.commit.Modification attribute)

 	
 	Modification (class in pydriller.domain.commit)

 	modifications (pydriller.domain.commit.Commit attribute)

 	ModificationType (class in pydriller.domain.commit)

 	MODIFY (pydriller.domain.commit.ModificationType attribute)

 	msg (pydriller.domain.commit.Commit attribute)

N

 	
 	new_path (pydriller.domain.commit.Modification attribute)

 	
 	nloc (pydriller.domain.commit.Modification attribute)

O

 	
 	old_path (pydriller.domain.commit.Modification attribute)

P

 	
 	parents (pydriller.domain.commit.Commit attribute)

 	ProcessMetric (class in pydriller.metrics.process.process_metric)

 	project_name (pydriller.domain.commit.Commit attribute)

 	pydriller.domain.commit (module)

 	
 	pydriller.domain.developer (module)

 	pydriller.git_repository (module)

 	pydriller.metrics.process.process_metric (module)

 	pydriller.repository_mining (module)

R

 	
 	removed (pydriller.domain.commit.Modification attribute)

 	RENAME (pydriller.domain.commit.ModificationType attribute)

 	
 	repo (pydriller.git_repository.GitRepository attribute)

 	RepositoryMining (class in pydriller.repository_mining)

 	reset() (pydriller.git_repository.GitRepository method)

T

 	
 	token_count (pydriller.domain.commit.Modification attribute)

 	
 	total_commits() (pydriller.git_repository.GitRepository method)

 	traverse_commits() (pydriller.repository_mining.RepositoryMining method)

U

 	
 	UNIT_COMPLEXITY (pydriller.domain.commit.DMMProperty attribute)

 	UNIT_COMPLEXITY_LOW_RISK_THRESHOLD (pydriller.domain.commit.Method attribute)

 	UNIT_INTERFACING (pydriller.domain.commit.DMMProperty attribute)

 	
 	UNIT_INTERFACING_LOW_RISK_THRESHOLD (pydriller.domain.commit.Method attribute)

 	UNIT_SIZE (pydriller.domain.commit.DMMProperty attribute)

 	UNIT_SIZE_LOW_RISK_THRESHOLD (pydriller.domain.commit.Method attribute)

 	UNKNOWN (pydriller.domain.commit.ModificationType attribute)

 _images/mygif.gif

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 PyDriller documentation!

 		
 Overview / Install

 		
 Requirements

 		
 Installing PyDriller

 		
 Source Code

 		
 How to cite PyDriller

 		
 Getting Started

 		
 Configuration

 		
 Selecting projects to analyze

 		
 Selecting the Commit Range

 		
 Filtering commits

 		
 Other Configurations

 		
 Git Diff Algorithms

 		
 Commit Object

 		
 Modifications

 		
 GitRepository

 		
 Delta Maintainability

 		
 Background

 		
 Definition

 		
 Properties

 		
 Example usage

 		
 Under the hood

 		
 Relation to SIG DMM

 		
 References

 		
 Process Metrics

 		
 Change Set

 		
 Code Churn

 		
 Commits Count

 		
 Contributors Count

 		
 Contributors Experience

 		
 Hunks Count

 		
 Lines Count

 		
 API Reference

 		
 GitRepository

 		
 RepositoryMining

 		
 Commit

 		
 Developer

 		
 Process Metrics

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

